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1. SCOPE OF WORK

This note is devoted to derive the algorithms describing hexapod kinematics. A parametric
approach is adopted in order to express mechanism layout as function of few basic
elements of its geometry. The system is representéd by a vector model in a Cartesian
space. Both direct and inverse kinematic analyses are carried out.
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2. APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable Documents

-[1] G.lsella, "Preliminary Analysis of a Hexapod Pointing System for Space
Applications", ESA STM-253, May 1994;

2.2 Reference Documents

- [2] W.H.Press et al., “Numerical Recipes”, Cambridge University Press, 1986;
- [3] J.R.Wertz, “Spacecraft Attitude Determination and Control”, 1978;
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3. SYSTEM MODEL AND REFERENCE FRAME

3.1 System degrees of freedom

The hexapod is a mechanism made of three subsystems: the fixed platform, the actuators
and the mobile platform. For the purposes of this analysis all these elements are modelled
as rigid ones and the joints connecting them are considered as ideal, i.e. introducing pure
kinematic relations.

There are 12 joints, each one restraining 3 degrees of freedom (dofs). Thus the overall
number of system dofs is reduced to 6.

mobile platform + |6
actuators + |36 (6 x 6)
total = 142

joints - 136 (3 x12)
grand total = |6

Table 1: mechanism dofs

3.2 Fixed and Mobile Reference Frames

The fixed platform includes the fixed reference frame (X, Y, Z¢) to which all vectors and
rotations are referred to. The reference frame origin is placed in one of the fixed joints. Z.
axis is perpendicular to the plane defined by the fixed platform. In this model, the fixed and
mobile platforms are defined as the planes containing the actuator joints.

Being the hexapod a pointing system, it is convenient to introduce an auxiliary reference
frame, to describe mechanism position in terms of mobile platform attitude and center of
rotation position.

Mobile reference frame (X, Yy, Z,) origin lays on the axis of the mobile platform
(perpendicular to the plane defined by the platform through its center) and defines
mechanism center of rotation. Z, axis is aligned with mobile platform one. X,, and Y,, axis

are parallel, respectively, to X; and Y. ones (before performing any mobile platform
rotation).
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Figure 1: reference frames

3.3 Vector Model

System layout suggests to model each actuator with a three dimensional vector. The
same approach is extended modelling both platforms by means of six vectors each. The
overall mechanism is thus uniquely described with 18 vectors, named as follows:

fixed platform {v1, v2, v3, v4, v5, v6}; actuators {a, b, c, d, e, f}; mobile platform

{o. B.v, 8, ¢, C}

Figure 2: mathematical model of hexapod
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The basic geometrical parameters which define hexapod geometry are hereafter listed.

Figure 3. hexapod geometrical parameters

mobile platform radius Rmp
mobile joints min. spacing Dmp
fixed platform radius Rfp
fixed joints min. spacing Dfp
actuator length Lo
(azimuth=0 and elevation=0)

center of rotations height Her

Table 2: geometrical parameters definitions
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4. DIRECT KINEMATICS

4.1 Controlled Variables

Direct kinematic analysis model the actual functioning of the mechanism, where actuators

lengths are the controlled variables. Position and attitude of the mobile platform have to be
derived by knowing actuators lengths.

4.2 Kinematic Equations

Different equations sets can be written to define mechanism layout and internal restraints.
Three independent closing equations (1) for hexapod lateral polygons are:

ja—c+,5 +y7 =v2+v3
c-e+d0+&=v4+V5 (1)
e—a+a+¢ =vb6+vl

Other equations can be written to state that mobile platform vectors define a rigid body,

i.e. both their lengths (2) and the angles among them are constants (3), and they all lay in
a plane (4):

r|a|=k1
|ﬂ|=k2
W=k (2)

4
ok (3)
£

yax f-e=0 (4)
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Finally, six more equations (5) are needed to assign actuators lengths, which are indeed
the controlled variables:

o =1,

bl = I,

=1,

= L ©)
lel =1,

\lf l =1

4.3 Nonlinear System Solution

Equations (1) are vector equations in the unknown vectors {a}=[x(a) y(a) z(a)]" ,
{c}=Ix(c) y(c) z(0)]", {e}=[x(e) y(e) z(e)]" and scalar ., B, 1, 5, €, & while equations (2), (3),
(4) and (5) are scalar ones.

There are 9 unknown vectors: a, ¢, €, o, B, 1, 8, €, £ for a grand total of 27 unknowns.
Equations (1), (2), (3), (4), and (5) can be simultaneously solved for the unknowns
{x}=[a,c e a B89, ¢ ]

Only equations (1) are linear, thus for the solution of nonlinear system a recursive
procedure must be adopted, namely Newton-Raphson method [ref.2].

Given the set of N=27 nonlinear functions f; to be zeroed, involving the variables
x; =1...27, a solution, if exist, is recursively approximated as:

Xinew - XiOId + 6Xi , (6)
where dx; is the solution of the linear system

Yo, =p, =127 7)

with a.A=é—("— and B, =-f, .
5 dc i i
J

The constant part of both the Jacobian «;; and coefficients B, can be computed apart from
the rest of the coefficients that depends on the values of the variables. As far as the

recursive procedure converges, the solution x = [a, ¢, e, a, B, v, 8, €, ] is updated with the
variations 3x; .
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The remaining three unknown actuators [b, d, f] vectors can be obtained from the solution

of the previous system by writing the closing equations for the lateral polygons not yet
exploited:

a-b+f=v2
c—-d+6=v4 (8)
e—f+{=v6

4.4 Attitude and Pointing Computation

When mechanism position is fully determined, mobile platform attitude is obtained as:

axf
oo x B

o
s YM=—

Z =
M |51

and X, =Y, xZ, (9)

Mobile platform center is given by:
vPC =v1 +a-a/2 +ac* X, (10)
where ac = Rmp * cos( arcsin(Dmp/2/Rmp)).

Center of rotation is computed as:

vCR = Hecr * Z,, (11)
Zy
7 Y A Xpm center of rotation
F A
L VCR mobile platform

£ QC"‘ e center
o

vPC
\ a

v1

mobile platform

Figure 4: mobile platform center and center of rotations
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The pointing angles of the mobile platform are computed as:

elevation A = arccos( z(Z,) )
| (12)
azimuth p = arccos( x(Zy) )

Figure 5: hexapod pointing angles
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5. INVERSE KINEMATICS

5.1 Matrix of Rotations

Inverse kinematic analysis is intended to derive actuators lengths as function of mobile
platform attitude. When the latter is expressed in terms of pointing coordinates, the
displacements command sequence to be imposed to the actuators can be computed for
any desired manoeuvre of the mechanism.

A feasible mode of functioning of the hexapod is obtained by imposing mobile platform
rotations around a point, the center of rotations, which is kept fixed.

Euler angles represent a convenient way of describing such rotations [ref.3]. Among the
available Euler angles rotation sequences, 3.2.3 one is chosen because allows rotation
angles to be expressed directly as the pointing coordinates.

Euler rotation matrix [R323] (13)

cos(y)-cos(B)-cos(¢ ) - sin(y)-sin(¢ ) cos(y)-cos(8)-sin(¢p )+ sin(y)-cos(¢$) -cos(\y)-sin(et) ]
 -sin(y)-cos(8)-cos(¢ ) - cos(y)-sin($) -sin(y)-cos(8)-sin(¢ )+ cos(y)-cos(¢) sin(y)-sin(f) 1
'L sin(8)-cos(¢ ) sin(0)-sin(¢ ) cos(9) J

Being p and A respectively azimuth and elevation angles, 3.2.3 rotation sequence is
hereafter shown, where, as usual, the rotations order is assumed to be ¢, 6 and y:
First rotation directly performs azimuth manoeuvre:

Ze | 2y

S

Figure 6: first Euler rotation (around axis 3, i.e. axis Z)



Doc.: H5-TN-AD-001
MMT CONVERSION Date:26/08/99 Issue: 1

Page: 13 of 17

Second rotation around axis “2” executes elevation pointing:

Zg

Figure 7: second Euler rotation (around axis 2, i.e. axis Y,,)

These two manoeuvres suffice in achieving platform pointing (Z,, axis).
With third rotation one can control platform own orientation around hexapod pointing

direction. This last rotation is not uniquely determined when only azimuth and elevation
coordinates are specified.

With this rotation sequence (3.2.3), to hold initial platform own orientation a rotation
opposite to the azimuth angle must be executed. In fact, it can be demonstrated that Y= -p
maximize mobile axis projection on fixed ones and minimize platform in plane rotation (see
Fig.8).

Further y commands, if specified, can be added to this default one.
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Zg

\YF

Yy Y

Figure 8: third Euler rotation (around axis 3, i.e. Z,,)

5.2 Mobile Platform Vectors Rotations

Matrix R323 elements are computed by substituting commanded values of p, A and -p to
Euler angles ¢, 6 and y respectively. ‘

Rotated vectors of the mobile platform, hereafter indicated by superscript “r" are computed
by multiplying original ones by the rotation matrix:

{o}"=[R323] {o} = [R323] [x(ar) y(ox) Z(e0)]".
[.] (19
{6} =[R323] {¢} = [R323] [x() y(€) Z(Q)I".

5.3 Mobile Platform Center Translation

If Her is not null, the rotation causes a translation of the mobile platform center (see Fig.9).
The rotated position is computed as:

vPC'=vPC + vCR - vCR"= vPC + vCR - [R323] vCR (15)
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center of rotation

mobile platform
center

Ye

™

Figure 9: mobile platform center rotation

5.4 Mobile Reference Frame Computation

Mobile platform attitude can be calculated in terms of its reference frame components.
This can be done by using equations (9) as done for inverse kinematics solution, by
substituting rotated vectors o, " and &"instead of original ones.

a’ Xﬂr S5
3 YMr =17
S5

and X, =Y/ xZ,/ (16)

5.5 Actuators Length Computation

Rotated vector {a}" is computed as:
a'=vPC -v1+a72-ac X, (17)
Vectors {c}' and {e}" are respectively given by:

c=a+p-v2-v3+y (18)
e=vB+vi+a-a - (19)

The remaining actuator vectors [b', d, f] are obtained from equations (8), again by using
rotated vectors instead of original one. Then, actuators lengths are computed with
equations (5) as the norm of actuator vectors.
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6. FINAL REMARKS

Inverse kinematics equations for the hexapod mechanism allow to compute in closed form
the actuator command sequence needed to perform any desired manoeuvre expressed in
terms of payload pointing coordinates. By the other hand, for direct kinematics a numerical

method is derived to compute mobile platform pointing angles from actuators elongations.




Doc.: H5-TN-AD-001

MMT CONVERSION Date:26/08/99 Issue: 1
Page: 17 of 17

7. ANNEX A: ALTERNATIVE ROTATION SEQUENCE

The Euler attitude matrix [R3.2.3] allows to express pointing manoeuvre directly in terms
of azimuth and elevation coordinates. The drawback is the need to compensate platform
undesired in-plane rotation. However, it should be pointed out that third rotation
component y=-p does not actually represent an additional manoeuvre. In fact, all three
angles ¢, 6 and y are indeed executed by a unique rotation, which results to be their
composition. ’

This drawback can be avoided by choosing the rotation sequence [R2.1.3], in which
rotation is completely decoupled from the pitch and roll ones.

Euler rotation matrix [R213] (A1)
cos(y)-cos(9 ) + sin(y)-sin(6)-sin(¢ ) sin(y)-cos(8) -cos(y)-sin(¢)+ sin(y )-sin(8)-cos(9 ) '
-sin(y)-cos (¢ ) + cos(y)-sin(8)-sin(¢ ) cos(y)-cos(8) sin(w)-sin( )+ cos(y)-sin(8)-cos(¢$) :

cos(8)-sin(¢) -sin(0) cos(0)-cos(d) }

By the other hand, in this frame the pointing coordinates are expressed as a combination
of pitch(¢) and roll(6) angles:

¢ (A,p) =atan(tan(1)-cos(p)) (A.2)
O(A,p) :=-asin(sin(1)-sin(p)) (A.3)

For this last reason sequence [R3.2.3] could be preferred to the latter one.




